Appliance Standards Awareness Project

2023 State Clean Lighting

Savings estimates for: Maine

	Potential annual reductions in 2030					
State	Mercury in lamps shipped (lbs)	Power plant mercury emissions (lbs)	mercury emissions emissions (thous MT)		Potential annual electricity bill savings in 2030 (million 2020\$)	
Maine	3.9		11	128	16	

Assuming a compliance date of 2026.

	Potentia	al cumulative red through 2050	uctions	Cumulative electricity bill	
State	Mercury in lamps shipped (lbs)	Power plant mercury emissions (lbs)	CO ₂ emissions (thous. MT)	savings through 2050 (million 2020\$)	Total benefit– cost ratio
Maine	39	0.0002	150	216	16.0

Assuming a compliance date of 2026. The total benefit-cost ratio is calculated as the present value of the total utility bill savings from products sold through 2050 for the recommended standard divided by the present value of the total additional costs.

Fluorescent vs. LED: Economic analysis for most-shipped lamps (commercial sector)

Fluorescent lamp type	LED incremental cost (2020\$)	First-year electricity bill savings from LED (2020\$)	Life-cycle cost savings from LED (2020\$)	Payback period (years)
4-foot T12 – 40 W	2.01	10.55	48	0.2
4-foot T12 – 34 W	3.09	7.58	39	0.4
4-foot T8	0.10	5.13	29	0.02
4-foot T5	1.35	6.79	42	0.2
4-foot T5 high output	3.67	13.50	81	0.3
Pin-based CFL	1.99	8.43	24	0.2